
Software Engineering Technology

16 CROSSTALK The Journal of Defense Software Engineering April 2002

Integrated Computer Engineering (ICE),
Inc., a subsidiary of American Systems

Corporation, is experienced in identifying
and evaluating project risk in large-scale
systems acquisition and development
programs. During the last 12 years, ICE
assessed more than 280 federal, state,
Department of Defense, and commercial
software-intensive programs and projects.
These projects were responsible for the
acquisition or development of leading-
edge weapons, communications, finan-
cial, logistics, and public service automat-
ed data processing systems.

The project risks that were collected
during ICE’s 12 years of project assess-
ments began to form a substantial data-
base of useful information. Also added to
this risk database are project risks gath-
ered from risk studies conducted by the
Institute for Defense Analysis [1], risks
identified by Capers Jones [2] and Tom
DeMarco [3], and from risks identified
during risk management services ICE
performed in support of the Software
Program Managers Network [4]. To date,
the ICE risk database has grown to more
than 800 primary and secondary project
risk indicators.

What emerged from the ICE risk
database were seven predominant charac-
teristics relating directly or indirectly to
common failures observed among those
system acquisition and development proj-
ects that had the greatest difficulty deliv-
ering a quality product on time and on
budget. The seven common characteris-
tics are listed below:
1. Failure to Apply Essential Project

Management Practices. Many troubled
projects fail to apply proven project
management disciplines like cost esti-
mation, project scheduling, resource
planning, configuration management,
and proactive risk management, then
wonder why their project is in constant
turmoil.

2. Unwarranted Optimism and Unreal-
istic Management Expectations. Some
managers recognize the potential for

negative impact on their project from
potential problem areas; however, they
choose to see things through rose-col-
ored glasses, assuming that problems
will work themselves out even when all
available evidence raises the red flag.

3. Failure to Implement Effective
Software Processes. Many projects fail
to implement effective software
processes because their approach to
process application is not balanced.
Some apply minimal process and rely
on staff expertise, while others insist
on rigorous global process confor-
mance.

4. Premature Victory Declarations.
Pressures to deliver timely products
often result in premature declarations
of completion by managers. Success
cannot be declared until products have
been completed with the built-in con-
tracted quality and reliability.

5. Lack of Program Management Lead-
ership. Managing a software project
requires “courageous” and often clair-
voyant individuals who are willing to
confront today’s challenges to avoid
tomorrow’s catastrophes. We have
observed two types of problem man-
agers: those with software engineering
and no management experience, and
those with management and no soft-
ware engineering experience. Both

types lack the ideal blend of both tech-
nical and managerial know-how.

6. Untimely Decision-Making. Some
managers avoid making time-critical
decisions until it is too late, even when
they are faced with overwhelming
warning signs of impending problems.

7. Lack of Proactive Risk Management.
Many projects claim to implement risk
management but few do so effectively.
“What distinguishes the best organiza-
tions and best managers is not just
how well they do in their successful
efforts, but how well they contain their
failures [5].”

Now, let’s take a closer look at some real-
world risks that have been associated with
each of the seven characteristics.

Failure to Apply Essential
Project Management
Practices
Typical risks are as follows (risk designa-
tors are listed in Table 1, page 19):
• (A) The process being followed and

decisions being made will result in a
product that may not satisfy the critical
needs of the user and are inconsistent
with the severity of the consequences
of project failure.

• (I) Project plans do not describe how
technology will be used resulting in a
need to continuously rework inconsis-
tent products and correct resulting
problems.

• (J) Software reliability problems will
not be discovered because procedures
are not established for the collection
and analysis of error data generated
during software development.

• (C) Project plans are unrealistic or not
implemented and do not result in a
predictable development environment.

• (K) Software defects will not be found
because the contractor has neither
conducted nor planned for software
design inspections or walkthroughs.

• (L) Essential system functions do not
perform adequately or reliably due to

Seven Characteristics of
Dysfunctional Software Projects

Michael W. Evans, Alex M. Abela, and Thomas Beltz
Integrated Computer Engineering , Inc.

Taking advantage of its many years of experience in identifying and evaluating project risks in large-scale software systems
acquisition and development programs, Integrated Computer Engineering has developed a risk database. Their analysis of
this risk database has identified seven predominant characteristics that provide insight into the causes of dysfunctional soft-
ware projects. This article identifies these characteristics and the typical real-world risks that accompany each.

“Managing a software
project requires

‘courageous’ and often
clairvoyant individuals ...

willing to confront
today’s challenges to

avoid tomorrow’s
catastrophes.”

April 2002 www.stsc.hill.af.mil 17

Seven Characteristics of Dysfunctional Software Projects

testing problems or insufficient testing
of key software components.
What we repeatedly find through

assessments is that while the mainstream
software tasks have been reasonably well
planned and implemented, certain essen-
tial project management practices are not.
The practices that are routinely at the bot-
tom of list are: cost estimation, schedul-
ing, resource planning, configuration man-
agement, risk management, earned value
reporting, performance-based metrics, re-
estimation, quality assurance, and rigorous
testing.

Some managers perceive these prac-
tices as bureaucratic red tape that only gets
in the way of real engineering. Also, meth-
ods such as risk management, metrics, and
re-estimation often provide managers with
more reality than they care to know or
handle.

Unwarranted Optimism and
Unrealistic Executive
Management Expectations
Typical risks are as follows:
• (A) The process being followed and

decisions being made will result in a
product that may not satisfy the criti-
cal needs of the user and are incon-
sistent with the severity of the conse-
quences of project failure.

• (B) The staff is not capable of imple-
menting the product and applying the
technologies selected. Excessive
turnover may impact project success.

• (C) Project plans are unrealistic or not
implemented and do not result in a
predictable development environ-
ment.
In some projects there is an underly-

ing belief that all will be well. The reality
is that planning for the worst and being
surprised when it does not occur is a
much more effective way to manage a
software project. In 1995, only 16 percent
of software projects were expected to
finish on time and on budget. An esti-
mated 53 percent of projects cost nearly
190 percent of their original estimates [6].
When managing or participating in a sys-
tem acquisition or development project
there is absolutely no rationale for opti-
mism. Historical data do not support an
overly confident posture when managing
large complex high-tech programs. Why
then, is this unfettered optimism so com-
mon?

Two principal causes of unwarranted
optimism have been observed. The first
relates to the second degree of ignorance,
or “not knowing what you don’t know.”
Staff members with insufficient experi-

ence may have unrealistic optimism about
success for the following reasons:
• They are not aware of the magnitude

of the tasks or the problems they are
attempting to solve.

• They oversimplify what it will take to
achieve the required result or product.

• They attempt to implement silver-
bullet technology solutions without
having thoroughly evaluated their
effectiveness or impact on the pro-
gram.
The second cause of unwarranted

optimism stems from unrealistic execu-
tive management expectations. “There is
a major cultural barrier to accurate esti-
mation [and scheduling] that must be
highlighted … If an early estimate [or
schedule] predicts higher cost, longer
schedules, or lower quality than client or
manager expectations, there is a strong
tendency to challenge the validity of the
estimate. What often occurs in this situa-
tion is that the project manager is direct-
ed to recast the estimate so that it falls
within preset and arbitrary boundary con-
ditions [7].”

This self-imposed cultural barrier that
some executive managers place between

themselves and their program managers
forces those managers to report unrealis-
tic estimates, schedules, and project risks
to their customers and to oversight
organizations.

The cost of runaway or defective sys-
tems often gets personalized in the dis-
missal or demotion of the responsible
executive.

I don’t want yes men around me.
Tell me what you think even if it
costs you your job.

– Louis B. Mayer, legendary head
of production at MGM

With the threat of removal hanging
over their heads, many managers estab-
lish a “can-do-at-all-cost” mentality. Bad
news is not tolerated, projections of

problems are not acceptable, and any-
thing other than full steam ahead is pun-
ished in the severest manner.

Failure to Implement
Effective Software Processes
Typical risks are as follows:
• (G) The technical process being used is

inconsistent with the project’s require-
ments and the staff ’s ability to imple-
ment it.

• (D) Design and code defects will not be
discovered until late in the develop-
ment – too late to avoid cost, schedule,
or quality impacts.

• (H) The design (system or software
depending on where the indicator is
observed) may not support the applica-
tion’s critical safety or security require-
ments.

• (F) There is inefficient software devel-
opment due to failure to allocate
requirements early in the design phase.
Many software projects’ managers

assume that since trained software engi-
neers staff the project, project-specific
standards, guidelines, and common tools
are unnecessary.

There are two factors at work here that
impact the ability of the project to apply
common processes to specific projects.
The first is project uniqueness. To para-
phrase Tim Lister, each project is unique
[8]. Each has its own quirky clients, its own
unique staff, and its own expectations of
success. Could it be that adaptation of
process is 90 percent of the problem and
the common processes are marginal?
Technology and process are not a “cookie-
cutter” solution to every development
problem; the key to success is adaptation of
the technology and process to meet the
unique challenges of a specific project or
program.

“With the right people you might suc-
ceed without process maturity, but … the
best process in the world will not make you
successful without the right people [9].”

The second factor is project balance.
Technology, tools, processes, and people
must all be in balance at the project, not the
organizational level.

Premature Victory
Declarations
Typical risks are as follows:
• (L) Essential system functions do not

perform adequately or reliably due to
testing problems or insufficient testing
of key software components.

• (N) The system may not satisfy the
needs or expectations of the user when
delivered.

“The reality is that
planning for the worst
and being surprised

when it does not occur is
a much more effective

way to manage a
software project.”

Software Engineering Technology

18 CROSSTALK The Journal of Defense Software Engineering April 2002

• (O) Early release of unqualified prod-
ucts results in unexpected failures, fail-
ures in key user areas, and potentially
corrupted data, which destroys confi-
dence in future releases.
We have observed that the pressure to

deliver timely product has a tendency to
overwhelm the need for quality and conse-
quently results in an early and unwarranted
victory declaration by management.
“… Some of my staff would tinker on a
task forever, all in the name of quality. But,
in some cases the market doesn’t care that
much about quality. Instead, it’s screaming
for the product to be delivered yesterday
and is willing to accept it even in a quick and
dirty state. The decision to pressure people
into delivering a product that doesn’t meas-
ure up to their own quality standards is
almost always a mistake [9].”

A clear understanding of the customer’s
quality expectations is an essential prerequi-
site to client satisfaction. Delivery of a fault-
less solution that is significantly over-budg-
et and so late in delivery as to be obsolete
will fail to satisfy a customer as much as a
product delivered on time that does not
meet specified requirements or that has
poor reliability.

Lack of Program Management
Leadership
Typical risks are as follows:
• (C) Project plans are unrealistic or not

implemented and do not result in a pre-
dictable development environment.

• (E) The planning has not been updat-
ed recently and now is out of date with
the project environment and does not
reflect current agreements or con-
straints.

• (M) Customer relationships cause an
environment that is unstructured and
precludes successful implementation of
a product within cost and schedule.

• (B) The staff is not capable of imple-
menting the product and applying the
technologies selected. Excessive turn-
over may impact project success.
“Poor project management will defeat

good engineering, and is the most frequent
cause of project failure [10].” Too many
people who have never developed software
are making decisions about how software
should be developed. Attributes of a good
software project manager include a broad
range of technical software development
experience, the ability to manage people
and the dynamics of a team environment,
and the willingness to proactively manage
project risk and make timely decisions. To
paraphrase Tom DeMarco, “Managers …
make the craziness go away [11].”

During a recent assessment of a severe-

ly troubled software project, the managers
did not know the status of the product, the
staff was demoralized, and the project was
severely over budget and behind schedule.
What we discovered will amaze you.
Management had set a goal for this site to
become Software Engineering Institute,
Capability Maturity Model® (CMM®) Level
3 compliant by a certain deadline.
Unbelievably, they diverted 40 percent of
the experienced engineering staff to work
the CMM issue. The manager said, “We
thought the rest could take up the slack.”
This isn’t rocket science. If you want to
manage a software project you have to
hunker down and do it right: no shortcuts,
no nonsense, no silver bullets; just a laser
beam to the finish line.

Untimely Decision-Making
Typical risks are as follows:
• (D) Design and code defects will not be

discovered until late in the develop-
ment – too late to avoid cost, schedule,
or quality impacts.

• (E) The planning has not been updated
recently and now is out of date with the
project environment and does not
reflect current agreements or con-
straints.

• (F) There is inefficient software devel-
opment due to failure to allocate
requirements early in the design phase.
“Management is the art of planning

work so that it can be accomplished within
constraints of time, cost, and other
resources at a level that will be competitive
in the marketplace [12].” Delays caused by
slow decision making erode these con-
straints even further while the project team
waits for clear direction or crucial
resources. Unless plans remain current, a
project can be caught off guard when
unexpected problems arise, leaving man-
agers with insufficient controls, discipline,
and/or support facilities to make effective
and informed decisions.

A second problem results from late
decision making. Simply stated, you can fix
a bad decision, but no action occurs while
projects wait for managers to decide what
to do. During many project assessments we
conducted, engineers have stated that they
knew what actions to take and were ready
to proceed, but could not move out until
management decided the prudent course.

“Fast decision-makers often make bet-
ter decisions than slow decision-makers,”
according to a study by Kathleen
Eisenhardt of Stanford University and Jay
Bourgeois of Virginia University. Fast deci-
sion-makers “set up systems to collect a
range of information on their business and
markets constantly, and then make deci-

sions using the data available. Slow deci-
sion-makers first analyze a problem and
sort out the questions that must be
answered. Only then, do they go out and
look for that information [13].”

Lack of Proactive Risk
Management
Typical risks are as follows:
• (P) Miscellaneous risks not being

tracked make project success unlikely.
• (Q) Risk management may not prove

effective or identify key risks.
• (R) The lack of an effective risk man-

agement process results in unplanned
problems impacting the project.
“The problem of project management,

like that of most management [is] to find
an acceptable balance among time, cost,
and performance [14].” When a project
moves out of balance, a risk results. Often
schedule performance becomes the most
important issue due to customer pressures,
resulting in a loss of focus on cost and
product performance and increased proj-
ect risk. “An effective risk management
program is dynamic and ongoing through-
out the development process and requires
the participation of everyone involved
[15].”

During our assessments, a significant
amount of time is spent on determining
the effectiveness and degree to which a
project implements risk management as
part of its management structure. In our
experience, this assessment area is a bull’s-
eye indicator of the potential for overall
project risk. Projects that fail to do an
effective job of managing risk are con-
stantly reacting to problems, while those
that manage risk well anticipate rather than
react. “Your organization will be much bet-
ter once it moves away from reacting to
change, and toward proactive anticipation
and management of change [16].” To max-
imize potential for success, risk manage-
ment should play a visible and key role in
the process of project management.

“Risk management transcends modern
management theory, such as Total Quality
Management and Business Process Re-
engineering, because it is basic to decision
making. Risk management is based on the-
ories that provide different strategies for
decision making under problematic condi-
tions [17].”

Analysis
Table 1 shows each of the seven risk char-
acteristics and their respective risk designa-
tors (an upper case letter over the range A
to R). Each risk event in the ICE database
was characterized against the risk designa-
tors, and the tallied results are shown in the

Seven Characteristics of Dysfunctional Software Projects

April 2002 www.stsc.hill.af.mil 19

third column from the left. The risk desig-
nator events were accumulated for each
risk characteristic (fourth column), and the
frequency of occurrence relative to all
observed events in the database was calcu-
lated (far right column). It should be noted
that the percentages in the far right column
do not total 100 percent, as the risk desig-
nators are not unique to each characteristic.

The ranking of the characteristics is by
frequency of characteristic occurrence;
therefore, the data show what may be the
likely dysfunctional causes, but not their
relative impact on projects or programs.

Conclusion
When reviewing dysfunctional software
projects, a reasonable approach would be
to consider the risk descriptions for each of
the seven characteristics we have identified
and determine whether they apply.

Why do projects not address these
issues if they are so apparent? The first rea-
son is denial. When you are fighting the
day-to-day realities of a software project, it
is very easy to assume that the indicators of
disaster are probably wrong, and the proj-
ect will not be impacted the way the other
12 projects were. Denial is the excuse that
enables program managers to make dumb
decisions.

The second reason is cultural barriers.
Coincidentally, all of the seven factors we
identified focus on cultural, rather than
technical, issues. “Since 1979 we have been
contacting whoever is left on the project
staff to find out what went wrong. For the
overwhelming majority of the bankrupt
projects we studied, there was not a single
technological issue to explain the failure
[18].” Factors such as the seven we
addressed here do matter, and they should
be considered essential components of any
project.◆

References
1. Technical Risk Indicators for Embed-

ded Software Development. Institute
for Defense Analysis, Paper P-3027,
Oct. 1994.

2. Jones, Capers T. Assessment and Con-
trol of Software Risks. New Jersey:
Yourdon Press, Feb. 1994.

3. DeMarco, Tom. Why Does Software
Cost So Much? New York: Dorset
House Publishing, 1995.

4. Software Program Managers Network.
16 Critical Software Practices For
Implementing Performance-Based Man-
agement. Ver. 3.0, Arlington, Va.:
Integrated Computer Engineering, Inc.,
2 Aug. 2000.

5. DeMarco, Tom. Why Does Software
Cost So Much? New York: Dorset

House Publishing, 1995. 62.
6. Standish Group International. “Chaos.”

Open Computing Copyright, Mar. 1995
SPC.

7. Jones, Capers T. Assessment and Con-
trol of Software Risks. New Jersey:
Prentice Hall, Feb. 1994. 158.

8. Lister, Tim. “Software Management for
Adults.” Software Technology Confer-
ence, 1996.

9. Davis, Alan. “Software Lemmingineer-
ing.” IEEE Software Sept. 1993.

10. Humphrey, Watts. “Three Dimensions
of Process Improvement: Part I:
Process Improvement.” CrossTalk

Feb. 1998.
11. DeMarco, Tom. Why Does Software

Cost So Much? New York: Dorset
House Publishing, 1995. 66.

12. Putnam, Lawrence H., and Ware
Meyers. Industrial Strength Software,
Effective Management Using Measure-
ment. Los Alamitos, Calif.: IEEE
Computer Society Press, 1996. 1.

13. Putnam, Lawrence H., and Ware
Meyers. Industrial Strength Software,
Effective Management Using Measure-
ment. Los Alamitos, Calif.: IEEE

Computer Society Press, 1996. 13.
14. P.V. Norden. Useful Tools For Project

Management, Operations Research in
Research and Development. Edited by
B. V. Dean. New York: John Wiley &
Sons, 1963.

15. Molt, George. “Risk Management
Fundamentals in Software Devel-
opment.” CrossTalk Aug. 2000.

16. Boehm, Barry, Raymond Madachy, and
Chris Abts. “Future Trends: Implica-
tions in Cost Estimation Models.”
CrossTalk Apr. 2000.

17. Hall, Elaine. Managing Risk. Reading
Mass.: Addison-Wesley 1997. 5.

18. DeMarco, Tom, and Tim Lister. People-
ware, Productive Projects and Teams
2nd ed. New York: Dorset House
Publishing, 1999. 4.

Characteristic
Risk

Designator

Number of
risk events

applicable to
specific Risk
Designator

Number of risk
events for

Characteristic

Frequency of
occurrence relative
to all observed risk

events
(See Note 1)

A 246
I 6
J 36
C 66
K 10

1. Failure to Apply
Essential Project
Management
Practices.

L 116

480 57%

A 246
B 32

2. Unwarranted
Optimism and
Unrealistic
Executive
Management
Expectations.

C 66
344 41%

G 162
D 15
H 26

3. Failure to
Implement Effective
Software
Processes. F 45

248 30%

L 116
N 46

4. Premature
Declarations of
Victory. O 3

165 20%

C 66
E 3
M 5

5. Lack of Program
Management
Leadership.

B 32

106 13%

D 15
E 3

6. Untimely Decision-
making.

F 45
63 8%

P 4
Q 9

7. Lack of Proactive
Risk Management.

R 11
24 3%

Note 1: The total number of risk events categorized (841 events) was used as the baseline population of risk
events for frequency of occurrence calculations.

Table 1: Seven Risk Characteristics

Did this article pique your
interest?
You can hear more from Michael Evans
at the Fourteenth Annual Software
Technology Conference Apr. 29-May 2,
2002, in Salt Lake City, UT. He will
be presenting in Track 6 on Thursday,
May 2, at 1:00 p.m.

Software Engineering Technology

20 CROSSTALK The Journal of Defense Software Engineering April 2002

About the Authors

Alex M. Abela has 18
years of professional
engineering experience,
with more than seven
years experience as a
senior project leader of

major Defense programs. He has
worked in Defense Research and
Development organizations in Australia,
United Kingdom, and the United
States. His engineering experience
spans the disciplines of information
technology, electronics, electro-optics,
and telecommunications. His interests
in information technology include the
provision of technical advice on soft-
ware systems best practices. Currently
he is working for the Australian
Department of Defense as senior tech-
nical specialist in surveillance and
reconnaissance systems.

Australian Department of Defense
Land Engineering Agency
DPM-4-32,Defense Plaza
661 Bourke Street
Melbourne,Victoria
Australia 3000
Phone:+61 3 9622 2945
Fax:+61 3 9622 2782

Michael W. Evans,
former owner and pres-
ident of Integrated
Computer Engineering,
(ICE) Inc., is now a sen-
ior vice president with

American Systems Corporation,
which recently acquired ICE as a
wholly owned subsidiary. He has led
more than 250 program-risk assess-
ments of large federal, Department
of Defense (DoD), and commercial
software acquisition and development
projects and is considered an expert
in software testing, quality assurance,
and configuration management. He is
co-founder of the Software Program
Managers Network, the driving force
behind the DoD’s Software Acqui-
sition Best Practices Initiative. His
published books include Principles of
Productive Software Management, Produc-
tive Test Management, Software Quality
Assurance and Management, and The
Software Factory.

Integrated Computer Engineering,Inc.
142 North Central Avenue
Campbell, CA 95008
E-mail: candca@aol.com

Thomas Beltz serves
as executive assistant at
American Systems
Corporation. He has
more than 10 years of
experience in Depart-

ment of Defense and commercial
software acquisition, operational test
and evaluation (OT&E), and software
best practices implementation. At the
U.S. Navy OT & E Force, he authored
an OT&E Task Schedule with more
than 1,000 program-tracking controls
to determine system readiness for for-
mal operational evaluation. He co-
developed Integrated Computer
Engineering’s Software Development
Capability Evaluation Tool, providing
a quantitative assessment of a devel-
oper’s capability to build software
while meeting program life-cycle
requirements, and he has participated
in more than 25 independent risk
assessments of large-scale software
development programs.

ICE Directorate EA
Phone:(757) 463-8483,ext.21
E-mail:thomas.beltz@iceincusa.com

